Abstract

Boron carbide composites with 10 vol.% TiB2 were prepared by reactive sintering of B4C, TiO2, and carbon black powder mixture at the temperature of 1800 °C, under a pressure of 70 MPa in a vacuum. The combined effects of electric current and in-situ reactions led to a significant overheating of the central part of the sample, while no overheating was observed for hot press and non-reactive SPS processes. A lower electrical resistivity of TiB2 produced a significant Joule heating of boron carbide, leading to its partial decomposition to form gaseous boron and graphene platelets. Homogenous, fully dense and graphene-free samples were obtained when employing an insulating Al2O3 paper during reactive SPS. A short dwell time (30 s after a degassing step of 6 min) and the uniform distribution of fine TiB2 grains were the main advantages of isolated SPS over the reactive hot press and SPS processes, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call