Abstract

A hybrid electrochemical conditioning strategy for enhanced sewage sludge dewatering was proposed. A water content of 47.2 wt.% for the dewatered sludge cake was achieved at an applied voltage of 20 V for 30 min, which was significantly lower than previously reported results. The capillary suction time (CST) and specific resistance to filtration (SRF) were decreased by 75.6% and 90.9%, respectively. Four simultaneous processes, including electrooxidation, the electro-Fenton process, molecular oxygen activation via zero valent iron (ZVI) and Fe(III) flocculation, had synergetic effects on the degradation of extracellular polymeric substances (EPS) to enhance sludge dewaterability. The in situ generation of ZVI on the cathode electrode facilitated the reduction of Fe(III) to Fe(II) via activation of molecular oxygen. The sludge pH decreased spontaneously and remained acidic due to the competitive reaction of ZVI generation to hydrogen evolution as well as the Fe(III) flocculation process, which further guaranteed the high efficiency of hydroxyl radical generation. Changes in the physiochemical properties of the sludge (particle size distribution, zeta potential, viscosity and EPS characteristics) induced by the hybrid conditioning process were further explored. In addition, the economic potential of the hybrid system was preliminarily assessed (USD$ 127.6/ton dry sludge).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.