Abstract

The ZnO quantum dots-SiO(2) nanotubes (ZQDs-SNTs) nanocomposite was successfully fabricated by direct heat treatment of the electrospun zinc acetate/tetraethyl orthosilicate (TEOS)/polymer nanotubes (NTs). The results indicated that the ZnO quantum dots (ZQDs) with diameter about 3-5 nm were highly dispersed on the SiO(2) nanotubes (SNTs). And, there might be Zn-O-Si bonds between ZQDs and SiO(2) matrix, which formed interface states in the ZQDs-SNTs nanocomposite. The photocatalytic studies revealed that the ZQDs-SNTs nanocomposite exhibited high photocatalytic activity to degrade Rhodamine B (RB) under ultraviolet (UV) light irradiation, which might be ascribed to two reasons. The first one was the high dispersity of ZQDs; another one was the high separation efficiency of photogenerated electron-hole pairs due to the trap effect for photogenerated electrons of the interface states between ZQDs and SiO(2). During the photocatalytic reaction, the ZQDs-SNTs nanocomposite also exhibited high chemical stability in a wide range of pH values, which might be ascribed to the protective action of SiO(2) and the presence of Zn-O-Si bonds between ZQDs and SiO(2). Furthermore, the ZQDs-SNTs nanocomposites could be easily recycled because of their one-dimensional nanostructure property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call