Abstract

Hydroxyapatite (HAP) can endow a biopolymer scaffold with good bioactivity and osteoconductive ability, while the interfacial bonding is fairly weak between HAP and biopolymers. In this study, HAP was in situ generated on poly(l-lactic acid) (PLLA) particles, and then they were used to fabricate a scaffold by selective laser sintering. Detailedly, PLLA particles were first functionalized by dopamine oxide polymerization, which introduced abundance active catechol groups on the particle surface, and subsequently, the catechol groups concentrated Ca2+ ions by chelation in a simulated body fluid solution, and then, Ca2+ ions absorbed PO43- ions through electrostatic interactions for in situ nucleation of HAP. The results indicated that HAP was homogeneously generated on the PLLA particle surface, and HAP and PLLA exhibited good interfacial bonding in the HAP/PLLA scaffolds. Meanwhile, the scaffolds displayed excellent bioactivity by inducing apatite precipitation and provided a good environment for human bone mesenchymal stem cell attachment, proliferation, and osteogenic differentiation. More importantly, the ingrowth of blood vessel and the formation of new bone could be stimulated by the scaffolds in vivo, and the bone volume fraction and bone mineral density increased by 44.44 and 41.73% compared with the pure PLLA scaffolds, respectively. Serum biochemical indexes fell within the normal range, which indicated that there was no harmful effect on the normal functioning of the body after implanting the scaffold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.