Abstract

AbstractThis work developed a novel approach to the in‐situ synthesis of ZnO nanoparticles to modify the polysulfone (PSf) porous membrane substrate. The zinc acetate was added to the casting solution, and ZnO nanoparticles were synthesized during phase inversion. The non‐solvent pH and zinc acetate concentration controlled the ZnO synthesis and loading. Their effect on the substrates properties in terms of morphology, hydrophilicity and porosity was studied thoroughly. The result shows that the ZnO nanoparticles was not formed in acidic pH, while ZnO nanoparticles with size of 20 nm could be easily formed in basic pH. The successful synthesis of ZnO nanoparticles was investigated using FTIR and EDX analysis. The EDX images verify that in‐situ synthesis led to a more uniform dispersion than conventional incorporation method. Then the effect of ZnO loading on the interfacial reaction and polyamide (PA) structure was investigated. SEM images verify the successful synthesis of a uniform and defect‐free PA thin film on ZnO modified substrates. FO performance results show an enhancement in water flux and salt rejection as a result of ZnO incorporation in thin film nanocomposite (TFN) membranes, where TFN 1 wt.% in‐situ membrane showed 40% higher water flux than the control TFC membrane. The porous and hydrophile substrate in TFN 1 wt.% in‐situ membrane is responsible for improved separation performance. These modified membranes displayed uniform dispersion of ZnO nanoparticles within substrates, confirming that this method could effectively restrain the aggregation of the nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call