Abstract

We have generated in situ nanocomposite of Mn3O4 and reduced graphene oxide (rGO) upon employing wet-chemical reduction of graphene oxide (GO) by Mn(II) salt as mild-reducing agent for the first time and examined the oxygen reduction reaction (ORR) activity in 0.1 M KOH electrolyte. The half-wave potential (E1/2) of the nanocomposite catalyst (20% Mn3O4-rGO/C) was found to be around −0.153 V which is only ∼87 mV negative from the commercially available catalyst (20% Pt/C). Remarkably, after 5000 linear sweep voltammetry cycles the E1/2 shifted marginally by 20 mV; and the number of electrons transferred during ORR was estimated to be close to 4. Such an efficient electrocatalytic performance of the nanocomposite was primarily attributed to the synergistic interaction between Mn3O4 and rGO. The fabricated all-solid-state supercapacitor of rGO (extracted from the nanocomposite) in aqueous polyvinyl alcohol-sulfuric acid (PVA-H2SO4) gel polymer electrolyte (GPE) showed CS value of ∼310 F/g at a current density of 1 A/g along with long durability (10,000 charge-discharge cycles). All-solid-state flexible rGO supercapacitor exhibited high-flexibility and excellent durability (30,000 cycles with 100% retention of CS). Our results provide an enormous opportunity in designing transition metal oxides decorated semiconducting reduced graphene oxide nanocomposite platforms for various electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.