Abstract

In situ gellable hydrogels are more attractive in many biomedical and biopharmaceutical applications than pre-formed hydrogels because they can be implanted simply by injection and allow homogeneous incorporation of bioactive materials. In this study, the potential suitability of in situ gellable sugar beet pectin (SBP) for biomedical and biopharmaceutical applications was investigated. SBP aqueous solution gelled within 1 min after addition of appropriate amounts of horseradish peroxidase (HRP) and H₂O₂ via HRP-catalyzed oxidative coupling reaction of feruloyl groups on SBP molecules. The resultant gels gradually degraded under simulated physiological condition. L929 fibroblast cells encapsulated in the gels were scarcely damaged during the gelation process. A subcutaneously injected mixture of SBP, HRP and H₂O₂ solutions successfully gelled, and the gel did not induce necrosis in the surrounding tissue 1 week after implantation. These results demonstrate that the in situ gellable SBP gels are useful for biomedical and biopharmaceutical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.