Abstract

In situ Fourier transform infrared spectroscopy and thermogravimetric analysis were conducted to characterise the co-pyrolysis of low-rank coal (SJC) and direct coal liquefaction residue (DCLR) as well as the evolution of the main functional groups of the pyrolysis products. This research is expected to further elucidate the reaction mechanism of co-pyrolysis. It was found that the co-pyrolysis of SJC and DCLR has synergistic effects and increases the hydrogen supply during co-pyrolysis. The chain breakage and thermal decomposition of functional groups during co-pyrolysis lead to the formation of solid, liquid, and gaseous products. The presence of DCLR promotes deep pyrolysis to produce numerous aromatic and aliphatic groups; many of these free-radical fragments rearrange and condense with hydrogen free radicals ([H]) to produce tar with a high molecular weight. When the [H] content is low, the free-radical fragments combine with each other to form solid coke. During co-pyrolysis, SJC and DCLR serve as both, hydrogen transmitters and donors. The catalysed hydrocraking of aromatic hydrocarbons and phenols in the tar product in the presence of hydrogen increases the content of the light component in the tar and produces alkanes, decreasing the aromatics and phenol contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.