Abstract

The conformational change of isotactic poly(propylene) (iPP) during the thermal degradation process has been carefully studied by in situ Fourier transform infrared (FT-IR) spectroscopy. This new method of studying thermal degradation of iPP not only shows the conventional kinetic parameter information of thermal degradation such as the degradation activation energy DeltaE and the degradation factor n, which are in accord with the results of traditional thermogravimetry experiments, but also indicates that many significant molecular structure changes occur during the thermal degradation process that come from some characteristic absorption band changes of in situ FT-IR. A multivariate approach, principal components analysis (PCA), is applied to the analysis of infrared (IR) data, and the results further confirm the multi-step processes of the thermal degradation of iPP. Above all, this is a new application to polymer thermal degradation by in situ FT-IR that connects the intermediate conformational change with final results during thermal degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.