Abstract

Current knowledge on the sensitivity of marine fish to androgenic environmental chemicals is limited, despite the growing interest in the effects of endocrine disrupting chemicals. To study in vivo the effects of testosterone (T) on the fish immune response, we used a microencapsulation implant technique, the in situ forming microparticle system, containing 1mg T/kg body weight (T-ISM), in adult specimens of gilthead seabream (Sparus aurata L.), a species of great economic interest. We demonstrated that implants themselves (without T) have no significant effect on most of the parameters measured. In T-ISM implanted fish, T serum levels reached supraphysiological concentrations accompanied by a slight increase in 11-ketotestosterone and 17β-estradiol levels 21days post-implantation (dpi). Liver and head-kidney samples were processed 7 and 21 dpi to assess T-ISM effect on (i) the mRNA expression of genes involved in the metabolism of steroid hormones and in the immune response, and (ii) phagocyte activities. The expression profile of cytokines, chemokines and immune receptors was altered in T-ISM implanted animals that showed an early pro-inflammatory tendency, and then, a mixed pro-/anti-inflammatory activation during longer exposure. Furthermore, the enhancement of phagocytic activity and the production of reactive oxygen species by leukocytes 21 dpi in T-ISM implanted specimens suggest fine modulation of the innate immune response by T. Taken together, these data demonstrate for the first time the feasibility of using ISM implants in an aquatic species, and provide new data on the role played by T on the immune response in fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call