Abstract

In this study, we developed a biocompatible composite hydrogel that incorporates microspheres. This was achieved using a Schiff base reaction, which combines the amino and aldehyde groups present in gelatin (Gel) and oxidized alginate (OAlg). We suggest this hydrogel as a promising scaffold for bone tissue regeneration. To further boost its osteogenic capabilities and mechanical resilience, we synthesized curcumin (Cur)-loaded chitosan microspheres (CMs) and integrated them into the Gel-OAlg matrix. This formed a robust composite gel framework. We conducted comprehensive evaluations of various properties, including gelation time, morphology, compressive strength, rheological behavior, texture, swelling rate, in vitro degradation, and release patterns. A remarkable observation was that the inclusion of 30 mg/mL Cur-CMs significantly enhanced the hydrogel's mechanical and bioactive features. Over three weeks, the Gel-OAlg/Cur-CMs (30) composite showed a cumulative curcumin release of 35.57%. This was notably lower than that observed in standalone CMs and Gel-OAlg hydrogels. Additionally, the Gel-OAlg/Cur-CMs (30) hydrogel presented a reduced swelling rate and weight loss relative to hydrogels devoid of Cur-CMs. On the cellular front, the Gel-OAlg/Cur-CMs (30) hydrogel showcased superior biocompatibility. It also displayed increased calcium deposition, alkaline phosphatase (ALP) activity, and elevated osteogenic gene expression in human bone marrow mesenchymal stem cells (hBMSCs). These results solidify its potential as a scaffold for bone tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call