Abstract

In this study, pH-sensitive in situ gelling hydrogels based on oxidized alginate and gelatin-containing doxorubicin (DOX) loaded chitosan/gold nanoparticles (CS/AuNPs) nanogels were fabricated via Schiff-base bond formation. The obtained CS/AuNPs nanogels indicated a size distribution of about 209 nm with a zeta potential of +19.2 mV and an encapsulation efficiency of around 72.6 % for DOX. The study of the rheological properties of hydrogels showed that the value of G' is higher than G″ for all hydrogels, which confirms the elastic behavior of hydrogels in the applied frequency range. The rheological and texture analysis demonstrated the higher mechanical properties of hydrogels containing β-GP and CS/AuNPs nanogels. The release profile of DOX after 48 h indicates the 99 % and 73 % release amount at pH = 5.8 and pH = 7.4, respectively. MTT cytotoxicity study showed that the prepared hydrogels are cytocompatible on MCF-7 cells. By the Live/Dead assay, it was demonstrated that the cultured cells on DOX-free hydrogels were almost alive in the presence of CS/AuNPs nanogels. However, the hydrogel-containing drug and free DOX in the same concentration caused high death of MCF-7 cells as expected, which showed the potential of the developed hydrogels for application in the local treatment of breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call