Abstract

Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4 , but selective and efficient synthesis of higher alcohols (C2+ OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+ OH from CO2 hydrogenation over K-modified Ni-Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni-Zn carbide (K-Ni3 Zn1 C0.7 ) by carburization of Zn-incorporated Ni0 , which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C-C coupling to C2+ OH rather than conventional CH4 . This work opens a new catalytic avenue toward CO2 hydrogenation to C2+ OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call