Abstract

Lithium (Li) metal anode (LMA) is highly considered as a desirable anode material for next-generation rechargeable batteries because of its high specific capacity and the lowest reduction potential. However, uncontrollable growth of Li dendrites, large volume change, and unstable interfaces between LMA and electrolyte hinder its practical application. Herein, a novel in situ formed artificial gradient composite solid electrolyte interphase (GCSEI) layer for highly stable LMAs is proposed. The inner rigid inorganics (Li2 S and LiF) with high Li+ ion affinity and high electron tunneling barrier are beneficial to achieve homogeneous Li plating, while the flexible polymers (poly(ethylene oxide) and poly(vinylidene fluoride)) on the surface of GCSEI layer can accommodate the volume change. Furthermore, the GCSEI layer demonstrates fast Li+ ion transport capability and increased Li+ ion diffusion kinetics. Accordingly, the modified LMA enables excellent cycling stability (over 1000h at 3mA cm-2 ) in the symmetric cell using carbonate electrolyte, and the corresponding Li-GCSEI||LiNi0.8 Co0.1 Mn0.1 O2 full cell demonstrates 83.4% capacity retention after 500 cycles. This work offers a new strategy for the design of dendrite-free LMAs for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.