Abstract
Phenolic compounds are important industrial raw materials for various industrial applications, but phenol-containing wastewater creates significant environmental and biological hazards. To address these issues, a three-dimensional network graphene oxide-cyanoethyltriethoxysilane-β-cyclodextrin/poly (N-isopropylacrylamide) (GO-CTES-β-CD/PNIPAM) nanocomposite hydrogel as a phenol recovery adsorbent is prepared herein by in-situ polymerization. Double graft modification on the graphene oxide (GO) via the silane coupling agent 2-cyanoethyltriethoxysilane (CTES) and single (6-tetraethylenepentamine-6-deoxy)-β-cyclodextrin (NH-β-CD) compensated the loss of the active sites on both GO and N-isopropylacrylamide (NIPAM), and the hydrogel shows excellent mechanical properties as the chemical crosslinking and physical entanglement of the two components. Consequently, the composite hydrogel achieved an adsorption capacity of 131.64 mg·g−1 for the common environmental toxin 4-NP. After five repeated adsorption–desorption cycles, the hydrogel retained 74% of the initial 4-NP removal ratio. The adsorption results followed pseudo-first-order kinetics, corresponding to heterogeneous multilayer adsorption, which was regulated by a combination of surface adsorption and intra-particle diffusion mechanisms. In general, the nanocomposite hydrogel shows promising application in the field of recycling phenols from wastewater. Also, high photothermal conversion and temperature-sensitive properties are also demonstrated, which makes the hydrogel possessing great potential to be applied in smart microvalves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.