Abstract
In order to reduce CO2 emissions, as well as realize the resource utilization of waste dander (WD) and the goal of international “peak carbon dioxide emissions” and “carbon neutrality”, Biochar was prepared with WD via pyrolysis technology, achieving CaSO4 in situ generated on its surface, which could be used to inhibit soil organic carbon (SOC) from mineralizing and enhance soil carbon sequestration ability. The characterization results showed that the unstable carbon (C) structures as well as more conjugated structures were generated on Ca-BC, obtaining an increased C sequestration of Ca-BC to 21.70 %. With the application of Ca-BC, the mineralization rate of SOC was reduced to 0.451 mg CO2/(g·d), and the soil moisture content, pH and TOC content were increased to 45.48 %, 7.96 and 47.19 %. In addition, the bioinformatics analysis and redundancy analysis revealed that the application of Ca-BC promoted bacteria to convert into the stable C-dominant phyla (Firmicutes).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.