Abstract

Adsorption is the first step of the interface mechanism, but the adsorption behaviors of ozone (O3) and pollutants on the catalyst during catalytic ozonation have always been overlooked in previous works. In this study, a promising strategy for the in-situ decomposition of O3 to trigger surface reactive oxygen species (ROS) by nitrogen (N)-doped biochar was proposed, which greatly improved the efficiency of O3 utilization. Specifically, N-doped biochar (NBC700) with a high defect level (ID/IG = 1.165) was achieved by a one-pot method. It showed good adsorption on O3 and atrazine (ATZ), which promoted the in-situ formation of surface ROS, as well as resists the interferences of multiple coexisting anions (NO3−, Cl−, PO43−, SO42− and HCO3−) on ATZ removal. In-situ Raman spectra revealed the interface catalytic mechanism of O3 decomposition into adsorbed peroxide species (*O2) and adsorbed atomic oxygen (*O). Additionally, OH was the dominant ROS and surface-O3 further strengthened direct ozonation via intramolecular electron transfer. In this process, sp2-hybridized system with delocalized π electrons, electron-rich oxygen-containing functional groups, and conjugated heteroatoms were identified as the active sites, but defective sites with free electrons played the most important part according to the lowest adsorption energy (−13.12 eV) calculated by density functional theory (DFT). The degradation of ATZ included dechlorination and non-dechlorination pathways, which made the acute and chronic toxicity of most intermediate products both decrease to not be harmful to fish and green algae. This work provides a new perspective on the interface mechanism in catalytic ozonation for ATZ removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.