Abstract

2D van der Waals (vdW) layered semiconductor vertical heterostructures with controllable band alignment are highly desired for nanodevice applications including photodetection and photovoltaics. However, current 2D vdW heterostructures are mainly obtained via mechanical exfoliation and stacking process, intrinsically limiting the yield and reproducibility, hardly achieving large-area with specific orientation. Here, large-area vdW-epitaxial SnSe2/SnSe heterostructures are obtained by annealing layered SnSe. These in situ Raman analyses reveal the optimized annealing conditions for the phase transition of SnSe to SnSe2. The spherical aberration-corrected transmission electron microscopy investigations demonstrate that layered SnSe2 epitaxially forms on SnSe surface with atomically sharp interface and specific orientation. Optical characterizations and theoretical calculations reveal valley polarization of the heterostructures that originate from SnSe, suggesting a naturally adjustable band alignment between type-II and type-III, only relying on the polarization angle of incident lights. This work not only offers a unique and accessible approach to obtaining large-area SnSe2/SnSe heterostructures with new insight into the formation mechanism of vdW heterostructures, but also opens the intriguing optical applications based on valleytronic nanoheterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.