Abstract

Hydrogels containing silver nanoparticles (AgNPs) were recently found to exhibit excellent antibacterial properties against both gram-negative/positive bacteria and fungi. In this study, we reported the synthesis of AgNPs-contained gelatin-polyethylene glycol-dopamine (AgNP-GPD) hydrogels via the in situ formation of AgNPs in GPD polypeptide solution, followed by an enzymatic cross-linking reaction to form hydrogels. The experimental results showed that the reducing reaction exerted by GPD polypeptides under physiological conditions can afford the formation of AgNPs in situ in the polypeptide solution without the need for additional reducing agents and/or processes such as UV or thermal treatments and then the hydrogelation of GPD polypeptide solution containing AgNPs were preceeded via enzymatic cross-linking reaction. It was found that the gelation time, hydrogel mechanical property, degree of swelling and degree of enzymatic degradation for both GPD and AgNP-GPD hydrogels can be tuned by varying enzyme/oxidative agent concentration, catechol content, and reducing reaction conditions such as reaction time and silver ion concentration. Importantly, AgNP-GPD hydrogels exhibit excellent antibacterial properties against gram-negative and gram-positive bacteria. This type of hydrogel is a promising biomaterial for biomedical applications including wound healing and tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.