Abstract

AbstractMullite‐bonded porous SiC ceramics sintered in air by gelcasting are still challenges due to the high porosity induced severe oxidation of SiC, which results in the formation of large amount of detrimental cristobalite phase. Here in this work, small amounts of Y2O3 and CaF2 were added in SiC and Al(OH)3 raw materials as sintering additives for the in situ growth of mullite reinforcement. This additive system promoted the reaction between oxidation‐derived SiO2 from SiC and Al2O3 decomposed from Al(OH)3 to mullite phase. Almost no cristobalite phase was detected when sintered at 1450℃/2 h with CaF2 addition of more than 2.0 wt%. Mullite whisker reinforcement was in situ formed due to the gas reaction mechanism caused by CaF2 addition. Thus obtained porous SiC ceramics exhibited a flexural strength of 67.6 MPa at porosity of 41.3%, which maintained exceeding 36 MPa after 8 h corrosion in 10 wt% NaOH 80℃ solution, being the best performance up to now. This high performance of porous SiC was attributed to the additive induces proper phase control and in situ formation of whisker‐like mullite reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.