Abstract

Electrochemical reduction of carbon dioxide provides a feasible solution to the energy and climate crisis. Bi-based catalysts are promising candidates to electrochemically convert carbon dioxide (CO2) into formic acid or formate. Herein, ligand-stabilized Bi nanosheets are obtained from in-situ electrochemical reduction of a Bi-based metal-organic framework, which exhibit remarkable electrocatalytic performance for CO2 reduction. A high Faradic efficiency of 98 % for formate is achieved at a potential of -0.80 V vs. reversible hydrogen electrode (RHE) with an improved durability over 40 h. The remarkable electrocatalytic activity and stability could be attributed to the in-situ generated catalyst with abundant under-coordinated Bi active sites, which are effectively stabilized by residual ligands adsorbed on surface. This study demonstrates that ligand-stabilized under-coordinated surface sites would be facilely generated from in-situ transformation of metal-organic precursors for highly efficient CO2 conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call