Abstract

Nitrogen oxide (NOx) pollution presents a severe threat to the environment and human health. Catalytic reduction of NOx with H2 using single-atom catalysts poses considerable potential in the remediation of air pollution; however, the unfavorable process of H2 dissociation limits its practical application. Herein, we report that the insitu formation of PtTi cocatalytic sites (which are stabilized by Pt-Ti bonds) over Pt1/TiO2 significantly increases NOx conversion by reducing the energy barrier of H2 activation. We demonstrate that two H atoms of H2 molecule are absorbed by adjacent Pt atoms in Pt-O and Pt-Ti, respectively, which can promote the cleave of H-H bonds. Besides, PtTi sites facilitate the adsorption of NO molecules and further lower the activation barrier of the whole de-NOx reaction. Extending the concept to Pt1/Nb2O5 and Pd1/TiO2 systems also sees enhanced catalytic activities, demonstrating that engineering the cocatalytic sites can be a general strategy for the design of high-efficiency catalysts that can benefit environmental sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.