Abstract

Addition of ferric oxides into flocculent anaerobic sludge was reported to enhance methanogenesis due to accelerated direct interspecies electron transfer (DIET) between syntrophic microbial communities. However, it is generally hard to incorporate Fe oxides into already matured anaerobic granular sludge (AGS) due to its special aggregated structure. In this study, a novel method was attempted to fast incorporate Fe oxides into AGS through in-situ microbial formation and immobilization of biogenic Fe oxides. Factors influencing the formation of Fe oxides were investigated and effects of Fe oxides on the acidogenic and methanogenic performance of AGS were assessed. Results showed that AGS could form Fe oxides mainly in the form of magnetite and hematite through biological reduction of Fe(III) oxyhydroxide. A maximum loading amount of 83.9 mg Fe/g MLVSS was obtained at pH 7 after contacting with 60 mM Fe(III) oxyhydroxide. The efficiency of electron donors which supported Fe(III) reduction followed the order of pyruvate > propionate > glucose > acetate > lactate > formate. Addition of electron transfer mediators (ETMs) promoted the formation of Fe oxides and their performance followed the order of AQDS > AQC > humics > FMN > riboflavin. Presence of Fe oxides in AGS (134.6 Fe/g VSS) increased the production of volatile fatty acids (VFAs) and methane by 16.28% and 41.94% respectively, comparing to the control. The enhancement may be attributed to increased conductivity and stimulated growth of exoelectrogens (Clostridium and Anaerolinea) and methanogenic endoelectrogens Methanosaeta in granular sludge which may strengthen direct interspecies electron transfer between syntrophic microbial communities. Overall, this study provides an alternative strategy to improve the digestion performance of AGS through in-situ formation and immobilization of biogenic Fe oxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call