Abstract
AbstractMixed self‐assembled monolayers composed of a fluorescently labeled DNA and a mercaptobutanol diluent immobilized on gold electrodes were characterized by electrochemical measurements coupled with in situ fluorescence microscopy. The reductive desorption of the self‐assembled monolayers was monitored in real time through variations in the capacitance and fluorescence intensity. Desorption occurred in several steps, which was related to substrate crystallinity. Fluorescence microscopy revealed the presence of spatial heterogeneities in the form of highly fluorescent aggregates that remained at the electrode surface even after a reductive desorption step. This in situ electrofluorescence microscopy technique is useful to optimize the formation of the mixed layer to obtain a homogeneous distribution of the probes, which thus improves the efficiency of the recognition process in the development of biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.