Abstract

Pyranine was used as a fluorescence probe to monitor the chemical evolution in-situ during thin film deposition by the dip coating process. The sensitivity of the pyranine luminescence to protonation/deprotonation effects was used to quantify changes in the water/alcohol ratio in real time within the depositing film as the substrate was withdrawn from the coating reservoir. The spatially resolved spectral results clearly showed that preferential evaporation of alcohol occurred with increasing distance from the reservoir and that the maximum water content reached rather high values near the drying line. Correlation of the luminescence results with the interference pattern of the drawn films allows the solvent composition in the film to be mapped as a function of film thickness. These experiments demonstrate for the first time that luminescent organic molecules may be applied to the processing science of sol-gel thin film deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.