Abstract

ABSTRACT Generally different anaerobic degradation potentials for benzene, toluene, ethylbenzene and xylene isomers (BTEX) has been reported due to site specific conditions, such as the indigenous microbial population, electron acceptors (EA) available and concentrations of each BTEX compound. It was of interest to estimate relative biodegradation potential of each BTEX compound during enhanced anaerobic bioremediation of a BTEX-contaminated aquifer. In this study, an in situ method for assessing the degradation potentials of each BTEX compound present as a mixture under NO3 −injecting conditions by performing a series of single-well push-pull tests and well-to-well tests (WWTs) was developed. During the 1st and 2nd WWTs, biological heterotrophic dissimilative NO3 − denitrification was confirmed by simultaneous detection of both NO2 − and N2O and significant production of CO2 during the NO3 − degradation. The biodegradation fractions of NO3 − injected during the 1st and 2nd WWTs were 1.7% and 5.0%, respectively, with 7.18 and 8.85 mmol N/L/day of in situ zero-order denitrification rate coefficients. The concentrations of benzene, ethylbenzene, and xylenes measured were similar to values calculated when considering only dilution, but the measured concentrations of toluene were significantly lower than the values calculated were. These results indicate that in situ method presented in the study successfully evaluate anaerobic biodegradation potential of individual BTEX compounds by indigenous heterotrophic denitrifying microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call