Abstract

AbstractThe polyamide 6 (PA6)/isotactic polypropylene (iPP) in situ fibrillation composites are prepared by a novel extrusion die with an assembly of laminating‐multiplying elements (LMEs). The scanning electron micrographs illustrate that the dividing‐multiplying processes in LMEs elongate, break, and stabilize the dispersed PA6 phase in the iPP matrix along the flowing direction (FD). The morphology development of PA6 with different LME numbers greatly affects the rheological properties, crystalline behaviors, and mechanical properties. The dynamic rheological test performed at 195°C shows that the increased spatial restriction of the high‐aspect‐ratio PA6 particles increases the viscoelastic moduli, complex viscosity, and relaxation time. The crystalline analysis reveals that the heterogeneous nucleation becomes predominant and the transcrystalline morphology is observed in those samples produced by more LMEs. The tensile tests indicate that both, breaking strength and elongation, enhanced simultaneously because of the fibrillation of dispersed phase and the improvement in interfacial adhesion between the fibers and the matrix. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.