Abstract
By increasing the content of Ni3+, the catalytic activity of nickel-based catalysts for the oxygen evolution reaction (OER), which is still problematic with current synthesis routes, can be increased. Herein, a Ni3+-rich of Ni3S4/FeS on FeNi Foam (Ni3S4/FeS@FNF) via anodic electrodeposition to direct obtain high valence metal ions for OER catalyst is presented. XPS showed that the introduction of Fe not only further increased the Ni3+ concentration in Ni3S4/FeS to 95.02%, but also inhibited the dissolution of NiOOH by up to seven times. Furthermore, the OER kinetics is enhanced by the combination of the inner Ni3S4/FeS heterostructures and the electrochemically induced surface layers of oxides/hydroxides. Ni3S4/FeS@FNF shows the most excellent OER activity with a low Tafel slope of 11.2mVdec-1 and overpotentials of 196 and 445mV at current densities of 10 and 1400mAcm-2, respectively. Furthermore, the Ni3S4/FeS@FNF catalyst can be operated stably at 1500mAcm-2 for 200h without significant performance degradation. In conclusion, this work has significantly increased the high activity Ni3+ content in nickel-based OER electrocatalysts through an anodic electrodeposition strategy. The preparation process is time-saving and mature, which is expected to be applied in large-scale industrialization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.