Abstract

Catalytic activity of perovskite oxides as LaMnO3+δ is greatly limited by their low surface area and deficient active site density though they are thought to be one category of desired candidates for noble metal-based catalysts. Here, a robust three dimensional ordered macroporous (3DOM) γ-MnO2/LaMnO3.15 (Mn/3DLM) was in situ fabricated by the strategy of selectively dealloyed surface La cations. Mn/3DLM displayed excellent activity with 90% of chlorobenzene destructed at 207 °C (apparent activation energy of 45.4 kJ/mol), obviously lower than those of γ-MnO2 (244 °C; 51.9 kJ/mol) and bulk LaMnO3.15 (311 °C; 70.2 kJ/mol) owing to large surface area, excellent reducibility, and improved surface active oxygen concentration. Nucleophilic substitution was the main process for active oxygen attacking, while electrophilic substitution mainly contributed to chlorinated byproducts formation. Remarkably, reaction byproducts as phenol, o-dichlorobenzene, trichloroethylene, and bichloroethylene over Mn/3DLM can be efficiently inhibited during the long-term operations via weakened the electrophilic substitution effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.