Abstract
Hollow nanomaterials are considered to be excellent carriers due to the nanoreactor confinement effect, which can improve the performance of the supported catalysts. In this work, a hollow silica confined defective molybdenum oxide catalyst (MoOx/HS) was obtained by using phosphomolybdic acid grafted polystyrenes as the templates. Compared with solid silica-supported catalyst (MoO3/SS), MoOx/HS could make better use of active components to achieve complete desulfurization. The calculated turnover value (TON) of MoOx/HS was 1.37 mol/mol, which is three times more than that of MoO3/SS. The presence of oxygen defects also facilitated the oxidation reaction. In addition, the catalyst MoOx/HS had good stability and selectivity, and the desulfurization rate of dibenzothiophene (DBT) remained 95.3% after being recycled for 5 times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.