Abstract

This study successfully utilized a straightforward approach, choosing liquid-liquid phase separation to build a porous structure and synthesize composite absorbers based on polyimide-based porous carbon/Fe3C (PIC/Fe3C-1, PIC/Fe3C-2) nanoparticles and porous carbon/FeCo alloy nanoparticles (PIC/FeCo). The specially designed network structure pore structures contributed multiple reflection, conduction loss and strong interfacial polarization. After characterization, PIC/Fe3C-2 obtained minimum RL of -35.37 dB at 17.04 GHz with 1.55 mm thickness and effective absorption bandwidth of 4.95 GHz with 1.66 mm thickness. Furthermore, PIC/FeCo, with a thickness of 1.63 mm, exhibits the most robust electromagnetic wave loss ability at 15.6 GHz, with a minimum RL of -56.32 dB and an effective absorption bandwidth of 4.88 GHz. Thus, the design strategy presented in this study could serve as a model for synthesizing other high-performance absorbers, effectively mitigating electromagnetic wave-induced pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.