Abstract
Postoperative peritoneal adhesions could cause pelvic pain, infertility, and bowel obstruction. In addition, adhesiolysis makes second surgery difficult. For the first time, we fabricated double-layered hydrogels in situ on the trauma surface via sequential double spray processes to prevent peritoneal adhesions. The spray conditions were optimized for spray distance and gas flow rate to create homogeneous and seamless double-layered hydrogels. The top layer was composed of alginate (Alg)-carboxymethyl cellulose (CMC) and serves as the barrier between the wounded tissue and surrounding tissues. The bottom layer was composed of Alg-gelatin (Gela) and comes in direct contact with the wounded tissue to promote wound healing. In vitro experiments showed that the Alg-Gela hydrogel layer promoted wound healing by accelerating horizontal cell migration. In addition, the Alg-CMC layer prevented the vertical penetration of fibroblast cells. The prevention efficacy of the sprayable double-layered hydrogels was evaluated using a partial hepatectomy-induced adhesion model in rats. The double-layered hydrogels decreased the adhesion grade and extent of liver cut surface, whereas the two single-layered hydrogels, Alg-CMC and Alg-Gela, did not show any adhesion prevention efficacy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.