Abstract

Flexible energy-storage devices lay the foundation for a convenient, advanced, fossil fuel-free society. However, the fabrication of flexible energy-storage devices remains a tremendous challenge due to the intrinsic dissimilarities between electrode and electrolyte. In this study, a strategy is proposed for fabricating a flexible electrode and electrolyte entirely inside a matrix. First, a nest-structural and redox-active ionohydrogel with excellent stretchability (up to 3000%) and conductivity (167.9 mS cm-1 ) is designed using a hydrated ionic liquid (HIL) solvent and chemical foaming strategy. The nest-structure ionohydrogel provides sufficient "highways" and "service area", and the cation in HIL facilitates the reaction, transportation, and deposition of benzoquinone. Subsequently, in situ, a novel benzoquinone crystal-gel interface (CGI) is in situ fabricated on the surface of the ionohydrogel through electrochemical deposition of benzoquinone. Thus, an integrated CGI-gel platform is successfully achieved with a middle body as an electrolyte and the surficial redox-active CGI membrane for electrochemical energy conversion and storage. Based on the CGI-gel platform, an extreme simple and effective "stick-to-use" strategy is proposed for constructing flexible energy-storage devices and then a series of flexible supercapatteries are fabricated with high stretchability and capacitance (5222.1 mF cm-2 at 600% strain), low self-discharge and interfacial resistance and a wearable, self-power and intelligent display.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call