Abstract
It is still a challenge to develop very effective and stable non-noble catalysts for the hydrogen evolution reaction (HER). Here, a self-supported porous Ni-Mo-Cu coating is prepared by the dynamic hydrogen bubble template (DHBT) method. This three-dimensional (3D) porous Ni-Mo-Cu coating can offer a large surface area, which helps expose more active sites and promote the transmission of electrons and materials. To achieve this, the 3D porous Ni-Mo-Cu coating catalyst requires a low overpotential value of 70 mV at 10 mA cm-2 in 1 M KOH and stable catalytic properties at a high current density of 500 mA cm-2 for more than 10 h with no obvious evidence of degradation. DFT calculations show the source of the excellent catalytic performance of the 3D porous Ni-Mo-Cu catalyst in alkaline media, including the kinetic energy and adsorption energy. This work provides significant insight into the design of efficient 3D porous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.