Abstract

In situ exsolution of nanoparticles is widely considered as an efficient and cost-effective method for increasing the number of active sites and consequently the catalytic activity on ceramic anodes in solid oxide fuel cells (SOFCs). In this study, by doping on the A-site of Sr2Fe1.5Mo0.5O6-δ (SF1.5 M), evenly distributed Fe nanoparticles (∼100 nm) were exsolved on the La0.5Sr1.5Fe1.5Mo0.5O6-δ (LSFM) surface under a typical anode operating environment (humidified H2, 800 °C). In addition, the exsolution–dissolution reversibility of the exsolved Fe nanoparticles was observed during a redox cycle. Electrical conductivity relaxation (ECR) analysis demonstrated that the surface reaction kinetics on the LSFM anode is enhanced by in situ exsolution. Based on electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) analysis, the perovskite structure was not damaged by the exsolution or the surface phase transition. During exsolution, the ionic conductivity increased. The higher surface catalytic activity and faster oxygen transportation led to enhanced electrochemical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.