7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3390/ma13092015
Copy DOIJournal: Materials | Publication Date: Apr 25, 2020 |
Citations: 10 | License type: CC BY 4.0 |
There are many vertically deflected building structures in the world that require rectification. Temporary supports installed in the building bearing walls can be used to perform such a rectification. The supports consist of a hydraulic piston jack, a stack of parallelepiped steel elements, and a concrete grout. The structure is unevenly raised and reaches the desired vertical position using such supports. The support in which the piston extension is forced at the given time is an active support. The aim was to determine the stiffness of an active support. The investigations were performed in in situ conditions during experimental building rectification. No such investigations have been performed to date. It has been demonstrated that the stiffness of the investigated support results from the stiffness of the serially connected elements forming the support. In general, the support stiffness depends on the value of the force occurring in the support and is rising linearly along with the load for the investigated range. It was also shown that the force existing in the active support also depends on the stiffness of the building being rectified. The investigations carried out show that it is advantageous to use supports with smaller stiffness for rectification, as forces with smaller values must be induced in them. The application of forces with lower values also allows the avoidance of unfavorable penetration of the unlifted part of the building into the ground.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.