Abstract

Frequent occurrence of landslides in the Chinese Loess Plateau has been influenced by the changes of water conditions. This paper, based on in-situ water scouring experiments under various slope gradients, cross-sectional discharge shapes and flow quantities, analyzed the rill flow information characteristics on a loess slope and its driving factors for anti-scourability of the loess stratum. The results show that the critical erosion slope gradient for the loess stratum (Q3) is about 24° and the mean erosion rate under half-round cross-sectional discharge is smaller than that under rectangular discharge. The relationship between flow quantity and mean erosion rate is linear and is positively correlated. Mechanical subsurface erosion was the primary condition responsible for water scouring on loess slopes because of stronger runoff channels such as vertical joints and large amounts of macro void caused by plants and animals. Loess anti-scourability is a significant issue to advance the research for soil and water conservation in the Loess Plateau of China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.