Abstract

Two-dimensional (2D) metal-organic framework (MOF) nanosheets with large surface area, ultrathin thickness, and highly accessible active sites have attracted great research attention. Developing efficient approaches to realize the controllable synthesis of well-defined 2D MOFs with a specific composition and morphology is critical. However, it is still a significant challenge to construct thin and uniform 2D MOF nanosheets and resolve the reagglomeration as well as poor stability of target 2D MOF products. Here, an "in situ exfoliation growth" strategy is proposed, where a one-step synthetic process can realize the successful fabrication of PBA/MIL-53(NiFe)/NF nanosheets on the surface of nickel foam (NF) via in situ conversion and exfoliation growth strategies. The PBA/MIL-53(NiFe)/NF nanosheets combine the individual advantages of MOFs, Prussian blue analogues (PBAs), and 2D materials. As expected, the resulting PBA/MIL-53(NiFe)/NF as a glucose electrode exhibits an extremely high sensitivity of 25.74 mA mM-1 cm-2 in a very wide concentration range of 180 nM to 4.8 μM. The present exciting work provides a simple and effective strategy for the construction of high-performance nonenzymatic glucose electrochemical biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call