Abstract

In situ EQCM experiments were used to investigate the stability and roughness changes occurring in a sulfur-carbon cathode utilized for a Li-S battery during the charge-discharge process. Results show that the sulfur-carbon cathode gains mass during the first discharge plateau (∼2.4 V) due to the formation of the long chain polysulfides during the discharge (lithiation) process. However, further discharge to below 2.4 V yields an increase in the crystal resistance (Rc) suggesting the sulfur-carbon cathode becomes rougher. During the charge (delithiation) process, the roughness of the sulfur-carbon cathode decreases. Time dependent measurements show that the electrode surface becomes rougher with the deeper discharge, with the change occurring following a step to 1.5 V. The sulfur-carbon cathode exhibits stable Rc and frequency behavior initially, but then becomes rougher in subsequent following cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.