Abstract

The discovery of the ability of microorganisms to exchange electrons with inert electrodes has triggered new areas in fundamental and applied research. However, the field is currently limited to several known electrochemically active microorganisms enriched and isolated in research laboratories. An alternative strategy is to enrich such microorganisms in their native environment by allowing them to exchange electrons with polarized solid electrodes. The use of this approach is currently limited because of a lack of available tools. We developed a low-cost, battery-operated potentiostat that is capable of controlling the potential of a working electrode and can be deployed and operated remotely, allowing the enrichment of microorganisms on electrodes in their native environment. The device was tested in four alkaline hot springs in Heart Lake Geyser Basin in Yellowstone National Park (with a temperature ranging from 45 οC to 91 οC and a relatively constant pH of 8.5–8.7). Microbial community analysis showed a change in microbial community structure after 32 days of polarization. The impact of polarization on microbial community was most substantial on the electrodes that generated the highest cathodic and anodic currents, suggesting a direct impact of polarization on electrode microbial community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call