Abstract

The conducting polymers have continuously been hybridized with their counterparts to overcome the intrinsic functional limitations compared to the metallic or inorganic analogs. Remarkably, the liquid/liquid interface-assisted methods represent an efficient and facile route for developing fully tunable metamaterials for various applications. The spontaneous adsorption of nanostructures at a quasi-two-dimensional interface is energetically favorable due to the reduction in interfacial tension, interfacial area, and interfacial energy (Helmholtz free energy). This Perspective highlights the fundamentals of nanostructure adsorption leading to hierarchical architecture generation at the interface from an experimentalist's point of view. Thereafter, the essential applications of the conducting polymer/nanocomposites synthesized at the interface emphasize the capability of the interface to tune functional materials. This Perspective also summarizes the future challenges and the use of the known fundamental aspects in overcoming the functional limitations of polymer/nanomaterial composites and also provides some future research directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.