Abstract

Nanoporous silica nanofibers have been employed as a matrix to encapsulate horseradish peroxide enzymes via a simple electrospinning method. A viscous solution of prehydrolyzed tetramethyl orthosilicate, beta-d-glucose, poly(vinyl alcohol), and enzymes were employed as spinning solution to generate porous fibers in the form of nonwoven mats. The silica fiber mats thus produced have a high surface area because of the small diameter (100 to 200 nm) of the fibers as well as the extreme porosity (2 to 4 nm) of individual fibers caused by the glucose template present in them. The high surface area, mechanical flexibility, thermal stability, reusability, and freedom of encapsulating various enzymes make porous silica nanofibers excellent biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.