Abstract

All-inorganic perovskite quantum dots (PQDs), which possess outstanding photophysical properties, are regarded as promising materials for optoelectronic applications. However, the poor light conversion efficiency and severe stability problem hinder their widespread applications. In this work, a novel encapsulation strategy is developed through the in situ growth of CsPbX3 PQDs in presynthesized mesoporous cerium-based metal organic frameworks (Ce-MOFs) and further silane hydrolysis-encapsulation, generating stable CsPbX3@Ce-MOF@SiO2 composites with greatly enhanced light conversion efficiency. Moreover, the simulation results suggest that the pore boundary of Ce-MOFs has a strong waveguide effect on the incident PQD light, constraining PQD light inside the bodies of Ce-MOFs and suppressing reabsorption losses, thus increasing the overall light conversion efficiency of PQDs. Meanwhile, the Ce-MOF@SiO2 protective shell effectively improves the stability by blocking internally embedded PQDs from the harmful external environment. Further, the obtained white-light-emitting diode shows an ultrahigh luminous efficiency of 87.8 lm/W, which demonstrates their great potential in optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.