Abstract

We present a compact in situ electromagnet with an active cooling system for use in ultrahigh vacuum environments. The active cooling enhances the thermal stability and increases the electric current that can be applied through the coil, promoting the generation of homogeneous magnetic fields, required for applications in real-time deposition experiments. The electromagnet has been integrated into a reflectance difference magneto-optic Kerr effect (RD-MOKE) spectroscopy system that allows the synchronous measurement of the optical anisotropy and the magneto-optic response in polar MOKE geometry. Proof of principle studies have been performed in real time during the deposition of ultra-thin Ni films on Cu(110)-(2 × 1)O surfaces, corroborating the extremely sharp spin reorientation transition above a critical coverage of 9 monolayers and demonstrating the potential of the applied setup for real-time and in situ investigations of magnetic thin films and interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.