Abstract

Chemically modified tips in scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have been used to improve the imaging resolution or provide richer chemical information, mostly in ultrahigh vacuum (UHV) environments. Tip-enhanced Raman spectroscopy (TERS) is a nanoscale spectroscopic technique that already provides chemical information and can provide subnanometer spatial resolution. Chemical modification of TERS tips has mainly been focused on increasing their lifetimes for ambient and in situ experiments. Under UHV conditions, chemical functionalization has recently been carried out to increase the amount of chemical information provided by TERS. However, this strategy has not yet been extended to in situ electrochemical (EC)-TERS studies. The independent control of the tip and sample potentials offered by EC-STM allows us to prove the in situ functionalization of a tip in EC-STM-TERS. Additionally, the Raman response of chemically modified TERS tips can be switched on and off at will, which makes EC-STM-TERS an ideal platform for the development of in situ chemical probes on the nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.