Abstract

Highly active and stable electrocatalysts based on non-precious metals for hydrogen evolution reaction (HER) in alkaline solution are urgently required for enabling mass production of clean hydrogen in industry. Herein, core–shell NiOOH/Ni nanoarchitectures supported on the conductive carbon cloth have been successfully prepared by a facile electrodeposition process of Ni, and a subsequent in situ electrochemical oxidation. When explored as an alkaline HER electrocatalyst, the as-synthesized NiOOH/Ni nanoarchitecture requires only a low overpotential of ∼111 mV to attain a current density of −10 mA cm−2, demonstrating its strong catalytic capability of hydrogeneration. The excellent HER activity could well be attributed to the decreasing charge transfer resistance and competitive electrochemical active area of the amorphous NiOOH, compared with inactive Ni substrate. The feasible methodology established in this study can be easily expanded to obtain a series of nano-sized metal oxyhydroxide materials for various energy conversion and storage applications, where Ni-based nanomaterials are among the highly active ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.