Abstract

This study demonstrates that the electrochemical doping of lanthanum nickelate (LNO) with cobalt ions is a promising strategy for enhancing its physical and electrochemical properties, which are critical for energy storage and conversion devices. LNO emerges as a promising hole transport layer (HTL) in solar cells due to its stability, large band gap, and high transparency. Nevertheless, its low conductivity and improperly aligned band positions are persistent problems. Here, in a pioneering endeavor, Co-doped LNO thin films were synthesized electrochemically and applied as the HTL in polymer solar cells (PSCs). Characterization revealed the impact of Co doping on the electrochemical, structural, morphological, and optical properties of LNO thin films. Depending on the Co doping level, PSCs based on 10 mol % Co-doped LNO outperformed pure LNO, achieving a champion efficiency of 6.11% with enhanced short-circuit current density (12.84 mA cm-2), fill factor (68%), open-circuit voltage (0.70 V), and external quantum efficiency (82.6%). This enhancement resulted from decreased series resistance, refined surface morphology, minimized trap-assisted recombination, enhanced conductivity, increased charge carrier production, favorable energy level alignment, and improved current extraction facilitated by LNC0.10O HTL. Moreover, the unencapsulated PSC-LNC0.10O long-term stability notably improved and retained 86% of its initial PCE after 450 h storage in ambient air, 82% after being continuously heated to 85 °C for 300 h, and 80% after operating at maximum power point for 300 h. These findings offer a straightforward approach to enhancing PSC performance through Co doping of LNO, supported by density functional theory (DFT) calculations that validate the experimental results and confirm the improvement in optical properties and stability of PSCs as an HTL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call