Abstract

Microbes have a wide range of metabolic capabilities available that makes them industrially useful organisms. Monitoring these metabolic processes is a crucial component in efficient industrial application. Unfortunately, monitoring these metabolic processes can often be invasive and time consuming and expensive, especially within an anaerobic environment. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) offer a non-invasive approach to monitor microbial activity and growth. EIS and CV were used to monitor Clostridium phytofermentans, an anaerobic and endospore-forming bacterium. C. phytofermentans ferments a wide range of sugars into hydrogen, acetate, and ethanol as fermentation by-products. For this study, both traditional microbiological and electrochemical techniques were used to monitor the growth of C. phytofermentans and the formation of fermentation products. An irreversible reduction peak was observed using CV beginning at mid-logarithmic phase of growth. This peak was associated with C. phytofermentans and not the spent medium and was indicative of a decrease in carbon and energy sources to the cells. Additionally, EIS analysis during growth provided information related to increased charge transfer resistance of the culture also as a function of carbon and energy source depletion. Results demonstrate that CV and EIS are useful tools in the monitoring the physiological status of bioprocesses.

Highlights

  • A variety of industrial processes rely on the astounding diversity of microbial metabolic capabilities as well as recent technological advances, all leading to an increase in bioprocess technologies in industries such as food and beverage, pharmaceutical manufacturing, and energy production (Demain 2000; Vojinović et al 2006)

  • Cell counts indicated that lag phase of growth occurred on day one, logarithmic phase of growth on day two and stationary phase of growth on day three (Fig. 1). Chromatography results corroborated this with cellobiose utilization as well as acetate and ethanol production beginning with log phase growth initiating at about 24 h (Fig. 1)

  • The movement of electrons via metabolic pathways and electron transport chains as a function of carbon and energy source utilization as well as ionic flux across membranes can be measured by electrochemical techniques

Read more

Summary

Introduction

A variety of industrial processes rely on the astounding diversity of microbial metabolic capabilities as well as recent technological advances, all leading to an increase in bioprocess technologies in industries such as food and beverage, pharmaceutical manufacturing, and energy production (Demain 2000; Vojinović et al 2006). Monitoring the growth and activity of the various microbes involved is an essential component of bioprocesses for process efficiency. Even small changes in the growth environment, such as pH, temperature and pressure can affect metabolic processes carried out by the microbes (Vojinović et al 2006; Skibsted et al 2001). Costs for off-line monitoring including sample collection and analysis necessitate a somewhat minimalistic approach for data collection which decreases the opportunity for early problem detection (Vaidyanathan et al 2001, Schügerl 2001; Marose et al 1998). On-line monitoring with in situ electrodes has problems related to electrode biofouling and requires sufficient maintenance, with associated time and cost for reliable data (Harms et al 2002)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.