Abstract

The injectable electroactive and antioxidant hydrogels are prepared from mixing the tetraaniline functional copolymers and α-cyclodextrin (α-CD) aqueous solution. UV-vis and CV of the copolymer solution showed good electroactive properties. The antioxidant ability of the copolymer is also proved. The gelation mechanism and properties of the system are studied by WAXD, DSC, and rheometer. The encapsulated cells are highly viable in the hydrogels, suggesting that the hydrogels have excellent cytocompatibility. After subcutaneous injection, H&E staining study suggests acceptable biocompatibility of the materials in vivo. Moreover, data shows the injectable electroactive material can effectively accelerate the proliferation of encapsulated cells with electrical stimuli, and the mechanism is also elaborated. Such an injectable electroactive hydrogel would more closely mimic the native extracellular matrix, thereby combining a biomimetic environment of long-term cell survival and electrical signal to support the generation of functional tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call