Abstract
To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.